A detailed look af the cumulus-valve mechanism and its

potential implications for cloud-base cloudiness

Raphaela Vogel and Sandrine Bony —

LMD/IPSL, CNRS, Sorbonne University, Paris




Uncertain warming response of cloud-base cloudiness in tfrades

Discrepancy in warming response between GCMs and Large-eddy simulations (LES)
near cloud base, where cloud amount largest (vial et al. 2017, Nuijens et al. 2014)

> GCMs: very sensitive to warming, controlled by convective mixing (Sherwood et al. 2014)

> LES + Observations: largely insensitive (Bretherton et al. 2013, Nuijens et al. 2014, Vogel et al. 2016) Dh
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Cumulus-valve mechanism: a *w

co co

> convection acts like a valve that maintains the mixed-layer top

h close to the lifting condensation level (LCL) (Betts 1976, Albrecht et al.

1979, Neggers et al. 2006)

> negative feedback on humidity, and pot. cloudiness near w

cloud base (Neggers et al. 2006, Nuijens et al. 2015)

> could explain larger cloud fraction with increasing mass flux

- opposite to what many GCMs do

Nuijens et al. 2015



purpose:

Use ICON-LEM simulations to study the premises of the valve mechanism

and its potential implications for cloud-base cloudiness

research question:

Does cloud-base cloudiness increase with increasing mass flux?



ICON-LEM simulation over tropical Atlantic

> |CON-LEM simulations run by Matthias Brueck at MPI

> Smagorinsky turbulence, binary cloudiness, fixed SST

> initialization and lateral boundary conditions from ECMWF
IFS (nudged every hour)

> 150m, 300m & 600m resolution, 155 vertical levels

used here:
> 150 m resolution on 1° x 2° domain upstream Barbados
> 6 days in December 2013, from 12 LT-8 LT
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Does cloud-base cloudiness increase with increasing mass flux?



Mostly yes...
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> The mass flux M explains a lot of the variations in cloud-base cloud fraction (a.g)



Mostly yes...
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> The mass flux M explains a lot of the variations in cloud-base cloud fraction (a.g)
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> The mass flux M explains a lot of the variations in cloud-base cloud fraction (a.g)

R=0.9

> Positive daytime and negative nighttime relationship between M and a4 on some days
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M and RH,,, fogether explain cloud-base cloudiness very well M=a
co
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> Maximum relative humidity at mixed-layer top (RH,,.,) important additional control
> From mass budget perspective, M controlled by entrainment rate and large-scale vertical velocity

(Vogel, Bony, Stevens, in review)

> What controls RH. .. .2

max *
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RH ... confrolled by surface RH and sub-cloud layer depth (h)
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> Sub-cloud layer thus well mixed!
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> Sub-cloud layer thus well mixed!

1. constant h:
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2. constant RH,q,:
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1. constant h:

controlled by surface RH and sub-cloud layer depth (h)
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> Sub-cloud layer thus well mixed!

> Cumulus valve: Decrease in h in response to increase in M reduces RH

and cloudiness, which reduces M

max

> GCMs tend not to resolve variations in h and unphysically compensate the increasing M by entrainment
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> M controlled by entrainment rate and large-scale vertical velocity
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How to think about the cumulus valve mechanism?e

Coupling between mass flux and RH,,,, through mass budget

crucial for capturing cloud response

>> 1o be tested during the EUREC*A campaign <<




